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INTRODUCTICN AND SUMMARY

During the year 1965 two reports were made at the two contractor
conferences on guidance and space flight theory held at Huntsville in
February and August. They were entitled "The Multistage Weierstrass and
Clebsch Conditions with Some Applications to Trajectory Optimization,"
by M. G. Boyce, and "Applications of Multistage Calculus of Variations
Theory to Two and Three Stage Rocket Trajectory Problems," by G. E.
Tyler. Also a paper was contributed to the Progress Report No. 7 on
Studies in the Fields of Space Flight and Guidance Theory, NASA T™M
X - 53292, pp. 7 - 31, on "Necessary Conditions for a Multistage
Bolza - Mayer Problem Involving Control Variables and Having Inequality
and Finite Equation Constraints," by M. G. Boyce and J. L. Linnstaedter.
A summary of the results in these reports, omitting proofs of theorems,
is given in this annual report. Additional work has been done recently
on gradient methods and on sufficient conditions, but results are as
yet incomplete.

The first section of this report contains a modification of the
Denbow multistage calculus of variations theory, allowing for discon-
tinuities at stage boundaries. This modification is an intermediate
step in passing from the classical theory to a form readily applicable
to trajectory optimization.

The second section summarizes extensions of the multistage theory
to problems involving control variables and having inequality and finite
equation constraints. The Mayer formulation is used, and differential
constraints are taken in normal form since in trajectory problems the
equations of motion are in such form.

A three stage re-entry problem is treated in Section IITI. This
example serves to partially illustrate the theory of Section II. To
avold computational complexity, simple intermediate point constraints
are assumed and first order approximation to gravitational attraction

is used.



SECTION I. ON MULTISTAGE PROBLEMS HAVING DISCONTINUIIIES AT
STAGE BOUNDARIES

Discontinuities will be allowed in the functions appearing in
the differential equation constraints and in the dependent variable
coordinates defining admissible paths. Let t be the independent

variable. For fixed p, define a set of variables(to, tl, seny tp)

to be a partition set if and only if to < SRR < tpu Let I

denote the interval to <t < tp and Ia the subinterval t_ St<t,

=]
g St < t, for a = p. Let z(t) denote
the set of functions (zl(t), ceey ZN(t)), where each za(t), o=1,

fora=1, ..., p -1 and ta

ceo, N, is continuous on I except possibly at partition points

B, eee t At these points right and left limits z,(t7), 2, (4] ) 5

l) ° p_l' l

z (t+ ) are assumed to exist and we let z (t. ) = z (t+) b=1
o0 o p“l (04 b (04 b ) 2
oou,p“"lt

The problem will be to find in a class of admissible arcs

z(t), (to,o..,tp), t, <t < t

satisfying differential equations
(1) ¢; (t,2,2) =C, tinI_, B=1,...,M<UN,
and end and intermediate point conditions
- + .
(2) ff(to,'.D’tp,Z(tO)’Z(tl))Z(tl),°no’Z(tp)) = O}

Y:l) eoe s KS (N+l)(p+l>3

(3) Za(t;) - 2o (t7) = dy = O

one that will minimize

- +
fo(to,...,tp, z(to), z(tl), z(tl

1
Let R a be an open connected set in the 2N+l dimmensional

)y eees Z(tp)).,

(t,z,i) space whose projection on the t-axis contains Iao The
R a . . .
functions ¢B are required to have continuous third partial deriva-

. ' . a . . '
tives in R.a and each matrix H¢Bi is assumed of rank M in Ra°
! a




t
Let 8 denote an open connected set in the 2Np+p+l dimmensional space

o2 (6g)s2 ()2 (¢])

fp’ p=0,1, ..., X have continuous third partial derivatives and the

of points (to,...,t ,...,z(tp)) in which the functions

matrix

(1) £ f

f f f cowy T + f
” p‘to ptb ptp pZOi(to) pza(tb) pza(tb) pza(tp) H

is of rank X+l.

An admissible set is a set (t,z,2) in Ré for some 8=l,...,D.

1
An admissible subarc Ca is a set of functions z(t), t on Ia’ with each

(t,z,2) an admissible set and such that z(t) is continuous and 2(t)
is piecewise continuous on Iaf An admissible arc El is a parti-’
tion set (to,-..,tp) together with a set of admissible suEarc§ Ca’
a=1, sees P such that the set (to,...,tp,z(to),z(ti),z(tl),...,z(tp))
is in S .

Multiplier Rule. An admissible arc E' that satisfies equations

(1), (2), (3) is said to satisfy the multiplier rule if there exist con-

stants ep not all zero and a function

Flt,z,2,\) = x6¢;(t,z,i), t in I,

with multipliers xs(t) continuous except possibly at corners or dis-

continuities of E', where left and right limits exist, such that the fol-

lowing equations hold:

T
(5) F, =ﬂ F, 4t + ¢ t in I,
e a=-1 O N

e T + [iaFa ]to = 0,
p Pt “a
) |

epfptb + 'ZaFiaJ‘t; = O, ‘



) +

b

e (f +y + F -y - [F. ]t_ = 0,
0 pza(tb) pza(tb) 2o £

ef -&‘o] =Oe
p pza(tp) Zy, tp

Every minimizing arc must satisfy the multiplier rule.

An extremal is defined to be an admissible arc and set of multipliers
25,(t), (to,...,tp), xs(t), St St

satisfying equations (1) and (5) and such that the functions
éa(t), xs(t) have continuous first derivatives except possibly at par-
tition points, where finite left and right limits exist. An extremel is

non-singular in case the determinant

M =1, «o., N

F. . 4.
2ol 82|

B, 8

1, vou, M

¢5Zn ° '

1s different from zero slong 1t. An admissible arc with a set of multi-

Pliers satisfying the multiplier rule is called normel if e, = 1. With
this value of e the set of multipliers is unique.
o]

Weierstrass Condition. An sdmissible arc E' with a set of multi-

liers A\.(t) is sald to satlsfy the Weierstrass condition if
PL2SI8 Mg

(t,2,2,%,2) = F(t,2,2,3) - F(t,z,2,))

- (éa - éa)Fé ('t,Z,i,)\) >0
(04

holds at every element (%,z,%,1) of E' for all admissible sets

(t,z,Z) satisfying the equations ¢; = O. Every normel minimizing arc

must satisfy the Weierstrass condition.
Clebsch Condition. An admissible src E' with a set of multipliers
xB(t) is said to satisfy the Clebsch condition if

Fiaénft,z,i,x) oM >0



holds at every element (t,z,%,)) of E' for all sets (ﬂl,..,,nN)

satisfying the equations

a * ~
¢Bi (t,z,2) Ty = O
(04

Every normal minimizing arc must satisfy the Clebsch condition.




SECTION ITI. ON MULTISTAGE PROBLEMS ZNVILVING CONTRCL VARIABLES
AND HAVING INEQUALITY AND FINITE EQUATION CCNSTRAINTS

By the introduction of new variables and by notational
transformations the theory of Section I can be utilized to es-
tablish necessary conditions for the more general formulation of
this section. As before, let t be the independent varisble and
define a set of variables (to, cooy tp) contained in the range of
t to be a partition set if and only if to < tl < 4.0 < tp. Let I
denote the interval t <t < tp, and let Ia denote the sub-interval

4 <t <t for a
a~-1 — a

L)

- < = 1.
1, , P -1 and ta-l <t< ta for a=17p

Let x(t) denote the set of functions (xl (t) 5, oony X, (£)).
For each i, i =1, ..., n, assume xi(t) to be continuous on I

except possibly at partition points t., b =1, ..., p -1, where

b)
finite left and right limits exist; denote these limits by xi(t;)
and xi(t;), respectively. The amount of discontinuity of each
member of x(t) at each partition point will be assumed known, and
we write
+ -
xi(tb) - xi(tb) - dyy = 0,

+). Thus

with each d,, & known constant. Also let x,(t. ) = x (tb

xi(t) is conZinuous et t_ if and only if dib 2 0. :
Let y(t) denote the set (yl(t), ceey ym(t)), where yj(t) is
piecewise continuous on I, j =1, ..., m, finite discontinuities being
allowed between, as well as at, partition points. In the formulation
of the problem the yj(t) will occur only as undifferentiated variables
and will not occur in the function to be minimized nor in the end and

intermediate point constraints. Such variables are called control

variables, while the xi(t) are called state varisbles.

The problem is to find in a class of admissible arcs
x(t), v(t), (to, cees tp), t, <t < tp,
which satigfy differential equations

. 8 . .
X, = Li(t,x,y,), t in Ia’ a=1, ..., P, i=1, ..., n,



finite equations

a
Mg(t)x’y) = O) g = l) 2e2y q)
inequalities
a
Nh(t,x,y) >0, h=1, ..., T, q+r<m,

and end and intermediate point conditions

T (bgr ooes by x(t), (8], x(I), cees x(t)) = 0,

k=1, ..., 8<{n+1) (p+1),
+ -
x; (&) - xi(tb) -4, =0, b=1, .., p -1,
one that will minimize

Jo(to,

ceny tp, x(to), x(ti), x(ti), cens x(tp)).

In order to state precisely the properties of the functions in-
volved in the problem, let Ra be an open connected set in the m+ n + 1
dimensional (t,x,y) space whose projection on the t-axis contains the
intervsl Ia’ and let S be an open connected set in the 2np + p + 1

dimmensional space of points

(tO’ eesy th X(‘t )) X('tl)) x(tI): coey x(tp))-

a Ma, 2
g

o

The functions L are assumed continuous with continuous

i’ h
partial derivatives through those of third order in Ra’ and Jo’ Jk
are to have such continuity properties in S. For each a, the matrix

| % |
ay
J
) a
N i
hy. 1
yJ
is assumed of rank q + r in Ra’ where Di is an r by r diagonal
matrix with Ni, ceay Ni as diagonal elements. The matrix
J J ) J J -y J +y J
et cty ctp cxi(to) cxi(tb) cxi(tb) cxi(tp)\ ,e=0, ..., s,

is assumed of rank s + 1 in S,



An admissible set is & set (t,x,y) in R, for some & =1, ..., D.

An admissible sub-arc C_ 1is a set of functions x(t), y(t), t on I

a}
with each (t,x,y) admissible, and such that x(t) is continuous and

x(t), y(t) are piecewise continuous on I,- An admissible arc is a

partition set (to, seey, Tt ) together with g set of admissible sub-grcs
C,a=1,. ,p,mmhtmu;ﬂmset(t, ”.,tp,xt ).xt th L.”,x& ))
is in S.

On introducing a generalized Hamiltonian function H as defined
below and utllizing the normel form of the differential equation
constraints, one can now apply the theory of Section I to obtain the
following multipliier rule.

The Multiplier Rule

An admissible arc E for which

Jk(to, cee, 'bp, x(t ), x('t ), x (t] Y, e, x t )) =
*5 tb) - %y (8) - %y = 0,

is seid to satisfy the multiplier rule 1f there exists & function

H(t)x)y’ ;M:V) = )\i i = U' Ma + vh h)

with multipliers xi( t), ug(t), vh(t) continuous except possibly at
partition points or corners of E, where finite left and right limits

exlgt, such that for each t in Ia’ a=1, o4, D,
t
a

(1) )\.=-[ H at + c,,
i a-1 Xy i 3

and such that the transversality metrix

[ ] a a
= = = >
H =0, % =1, MZ 0, N, > O,

")

B(t)) H(t)) - H(e)) -B(e) Ag(e) -2 (

g (e)) A (e)
(2)

J J J J J +J
ct ety ct, eXy (t o ) )

i b

ex, () Tex, (t))

i1s of rank s + 1. The multipliers vh are zero when Nh > 0. Every

minimizing arc E must satisfy the multiplier rule.




Between corners of a minimizing arc E the equations

x, =H K Xi = = Hx.’ Hy, = 0, vth = 0 (not summed)
i i J h

hold and hence also

aH
a - By

Transversality Conditions for Normal Arcs

Under the usual normelity assumptions, the transversality matrix
can be put into a form having one fewer rows. This leads to the
following statement of transversality conditions.

For a normal minimizing asrc the transversality matrix

SR H(t;“)-n(t;)wotb 'H<‘°p)+%tp Ay (6o (4 )
Jkto Jktb Jktp kai(to)
-xi(t;)+xi(t;)+Joxi(t;)+Jox.(t-) xi(tp)+Joxi(tp)
Tiex, () i, (87) T, (¢)

is of rank s.

Since the matrix is of order s + 1 by (nt+l) (p+l), the requirement

c = - O, \ /A
that the rank be s 1mposes \11"" 1) (p+l

) - s conditions. This is one
more condition than was imposed by 2) which was sufficient to determine
the multipliers up to an arbitrary proportionality factor.

Weierstrass Condition

For a normal minimizing arc E the inequality

AL (6,x,5) > 4L (6,x,)

must hold at each element (t,x,y,\,u,V) of E for all admissible sets

(t,x,Y) satisfying Mg t,x,Y) = 0 and W (t,x,Y) > 0.

Clebsch Condition

For & normal minimizing arc E +the inequality

H ﬂ.ﬂe <0
yjye J



10

must hold at each element (t,x,y,x,u,v) of E for all setg =

, aao,ﬂ
m
satisfying M (t,x,y)n, = 0 and N (t,x,y)n, = O, where in the last
[ J — hy J ,

J J
equation h ranges only over the subset of 1, ..., r for which
Nh(t,x,y) = 0,

For a normal minimizing arc the multipliers v, are all non-

h
negative.
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SECTION III. A THREE STAGE RE-ENTRY OPTIMIZATION PROBLEM

In this section the theory of Section II is applied to a three
stage re-entry problem. Since it is primarily an illustrative ex-
ample, certain simplifying assumptions are made. In particular, the
vehicle is assumed to be a particle of variable mass, with thrust mag-
nitude proportional to mass flow rate and thrust direction subject
to instantaneous change. Moreover, external forces are required to
be functions of position only, while the earth is assumed spherically
symmetrical and nonrotating with respect to the coordinate system
of the vehicle. Finally, motion is restricted to two dimensions,
gravitational acceleration is approximated by first order terms, and
air resistance is neglected.

The foregoing conditions zllow the motion of the vehicle to be
described by the following equations:

2 1

-a%x + cBlm- cos 6, t, St <ty
U = -aex, 'tlS‘t<t2,
-1
-a%x + c! <
a<x cBBm cos 0, te Lt< t5,
" -g +2a2y+cBm"lsine t <t<t
o 1 ’ o 1’
v = -g_ + 2a%y, t, <t <t,,
O i = zc
-g + 2a°y + Lo <t <
(_ 8, 2a%y dBBm sin 6, t2 <t< t3’
£=u, by <t <y,
F=v, t <6< s,
- <
B, t,<t<t,
h = 0, t St <ty
-B t. <t <%
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where to is initial time, t5 is final time, and tl, t2 are
intermediate staging times. The symbols a, go represent gravitation

constants, and B,, B, denote constant mass flow rates. This des-

3
cription implies a burning arc, a coast arc, and finally a burning
arc, with B5 not necessarily different from Bl'
The following end and intermediste point conditions will

be imposed.

9, t =0,

Jo = u (to) - u_ =0,
J55v(to)=0,

J), 2 x (to) = 0,

Js =y (t) -y, =0,
J65x(tl)-xl=0,
Jo 2y (8,) -y, =0,
J8Ex(t5)-x5=0,
Ig 2y (t5) - y5 = 0,
Jlo=m(t5) - my = 0,

and

m(t]) ~m (t7) = 4
\l) \l)_ l}
with uo? Yos %15 ye, XB’ y5, mB, dl’ Bl’ and B5 known constants.

The function to be minimized is taken to be the sum of the times
of the powered stages, that is,

Jd = - + - .
o) tl to t5 t2

Ir Bl = B5, this is equivalent to requiring that the fuel used be

minimized, or Jo o (to). The conditions J6 and J_. insure the

7

existence of three stages.
The Multiplier Rule of Section IT sllows the following Hamiltonian

to be written:
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- -1 - 2 -1,
M (-a3x cBm “cos 6) + A ( g, * 2a%y + cBym 'sin 9)

MRS As (-Bl), t, St <t

l’
- .2 _ 2
H= A (-a%x) + 0, (-g + 26%y) + AUt Y, b St < by,
2 -1 2 -1,
A ta®x + cBBm cog 6) + A ( g, * ea%y + cBBm sin 6)

gl b Ay xs ('BB)’ t, <t < t5,

The Euler equations for this Hemiltonian ere:

Moty =0

7\2 + )\LI- = O)
2 -

7\5 - a )\l = O}

Xh + 2azx2 = 0,
X5 - cBlm-z (xl cos 6 + 1\, sin 6) = 0,
cBlm-l (xi sin 6 - ), cos 6) = 0,
for t in [to, tl);
At Az =0,
Ao Ny 0 0,
ks - 8% = 0,
fy + 2%, =0,

for t in Etl, tg); and

foeds oo,
Xe + )\u = OJ

o - 2 -

XB a 11 = 0,

Ry * 2a212 = 0,
X5 - cBBm"2 (xl cos 6 + A, sin 6) = 0,
c:BBm'l (xl sin 6 - ), cos 6) = 0,

for t in [tg’ t3].



1h

Simple technigues for integration allow these equations to be

expressed in integrated form as follows:

>
]

A sin a(t + Cl),

1 1
Ay = A2 sinh afg(t + 02),
15 = -aAl cos alt + Cl) s

= -aA2 J2 cosh a2 (t + Cg)’

>
=
|

for to <t < tl;

1 t
1= A1 sin a(t + Cl),
' '
A, = A, sinn a2t + ) s

5 = -ah, cos a(t + Ci):
)\'Ll- = -aAQ,\/'é cosh 8\[2- (t + 02'):

for t <t< te; and
A o= A; sin alt + Ci ),
Ay = Ai' sinh a2(t + C;_' ),
Az = -aAicos a(t + Ci);

N, = -ah, J2 cosh af2(t + C, ),

for t2 <t< t5' It is clear in expressing

equations in stage 1 and stage 3 have been ignored.

A YD W
Aos hzs Ay
of time with two constants of integration, that the last two Euler

unctions

These equations

together with the Weierstrass condition will be used to expressed the

control angle as a function of the multipliers xl and Xg“

From the

last Fuler equation of stage 1 and stage 3 we have (for M # 0, cos 6 # 0)

ten 6 = )\2/7\1
and hence

sin 6 = + KE *1 + 12
and

cos 6 = + X%/ZJKf':FKE .
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From the Welerstrass condition of section II,

-1 ]
cBlm (xl cos 6 + A, sin 6 - M 5

for to <t < t. Here 6 is the control angle that actually optimizes,

cos @ - ), sin @) > O
and & ranges over all possible control angles for which the original
equations of motion are satisfied. This expression being non-negative

is equivelent to meximizing the following function (with respect to @):

W= xl cos & - x2 sin .,
}W ~ 2 .
Thus 2=0 ana J°W < 0 which gives
- i a + o =
Kl sin XE cos 0
and -xl cos O - Xe sin @ < 0O,
thus tan O = xel/xl and

2 2 2 2
A G xq//xl ag) +ay, Ea, M D) 20

which implies that cos O = A N xf +~x§ and similarly that

sin O = XE//Jif + xg + Hence the control angle 6 is expressed as
follows:
ten 6 = XE/IKI’ M £ 0, cos 6 0,
cos 6 = )\ NAZ + X2
1 1 2,
N T
mne-xevH. %

for stage 1. The same expressions for control angle & hold for stage 3.

The fifth Euler equation on stage 1 and stage 3 becomes

_ -2[ 2 2
_ chlm a2 22, t St <t
-2 72 2
cBBm xl + XE, tg <t< t}'

The transversality metrix which is given at the end of this section
has eleven rows and twenty-four columns and is of rank ten. From

this matrix fourteen end and intermediate conditions are found.
These conditions imply that all multipliers, except possibly

XB at tl and Ku at t

57 are continuous across staging times.
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Also the following condition holds at tl:

-] + -
+ i + + - + 1 =
cBlm (xlcose 1251n9) XS (Bl) (XB KB) utl=0
nere 1. = A, ()
W e - .
p) 3 1
A gimilsr condition that holds at te is:
-1 . + - N
cBBm (xlcose + 1251n9) - x5(B3) + (xh - xu) v -1=0,
The other four conditions implied by the transversality condition are:
)\.5(130) = O}

- H(tB) +1=0

An optimal trajectory for this problem requires the finding of
fifteen constants of integration from the equations of motion, a like

number from the Euler equations, and the four times to, tl’ t., and

t3' Fourteen transversality conditions, ten end and intermediite
conditions, and ten requirements on state variables at staging points
provide the necessary number of conditions for the determination of
these constants.

It is possible to start at the last stage to determine the
integration constants for the Euler equations in terms of multiplier

values. The constants for the third stage are:
A = -x33/a, (155 is the final value of X3),
A,.. = "')u.v/a\/—x
5D

2
C, =C., = ~-t,.
1 2 b
Because of the continuity of xl and KB at t2’
" '
A=A
" 1
Cl = C_,
The values for A2 and C2 only hold for the third stage. To proceed

from the third stage back into the second stage we need the value of the

difference




1T

xu(tg) - xu(t;). This can be found from the transversality condition
above which holds at t?. Supposing this equation solved, the deter-
mination of constants Aé, Cé for the second stage can proceed, and

these values also hold for the first stage for 3. and Kh' An

2

analogous procedure is applied to xl and ), for the first stage.

3
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TRANSVERSALITY MATRTX FOR THREE STAGE PROBLEM
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SECTION IV. CONCLUSIONS AND RECOMMENDATIONS

The multistage theory summarized in Section II and illustrated
in Section IIT involves multipoint boundary value problems. Closed
form solutions are to be expected only in problems with simple con-
straints. However, considerable practical information is obtainsble
from the general theorems. In particular, the transversality matrix
may yleld usable switching functions for determining coasting and
powered stages, and the Welerstrass condition can be interpreted as
the Maximum Principle of Hestenes and Pontryegin, which is especially
important for optimal paths lying pertially along region boundaries.

The procedure in Section IIZ of beginning with the final stage
and successively determining the constants of integretion for the
several stages in terms of the Lagrange multipliers would seem
applicable to more complicated problems. Trial estimates of the
multipliers at the final point would determine an optimel trajectory
which in general would not satisfy all intermediate and initisl
conditions. New estimates could then be made and the process re-
peated. This suggests attempting to obtain a sequence of optimal
trajectories converging to one that would satisfy all the multipoint
boundary conditions.

Another type of sequential process consists of using non-optimal
solutions of the equations of motion, each satisfying the multipoint
conditions, with the sequence converging to an optimal trajectory
satisfying all conditiong. Gradient, or steepest descent, methods
would apply to this procedure, and further study is recommended.

Some study has been made under this contract of analogues to the
Jacobi conjugate point conditions for multistage problems. Further
effort toward obtaining such conditions in computationally useful
form is recommended. Also the combination of necessary conditions,
suitably strengthened, into a set of sufficient conditions is desirable.

Application of multistage calculus of variations theory to the
optimization of six stage earth-moon trajectories is in progress under
this contract. Special attention to the reduction of computational

difficulties is needed.
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